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Abstract—This paper proposes to blindly evaluate the qual-
ity of images synthesized via a depth image-based rendering
(DIBR) procedure. As a significant branch of virtual reality
(VR), superior DIBR techniques provide free viewpoints in
many real applications, including remote surveillance and edu-
cation; however, limited efforts have been made to measure the
performance of DIBR techniques, or equivalently the quality of
DIBR-synthesized views, especially in the condition when refer-
ences are unavailable. To achieve this aim, we develop a novel
blind image quality assessment (IQA) method via multiscale
natural scene statistical analysis (MNSS). The design principle
of our proposed MNSS metric is based on two new natural
scene statistics (NSS) models specific to the DBIR-synthesized
IQA. First, the DIBR-introduced geometric distortions damage
the local self-similarity characteristic of natural images, and the
damage degrees of self-similarity present particular variations
at different scales. Systematically combining the measurements
of the variations mentioned above can gauge the naturalness of
the input image and thus indirectly reflect the quality changes
of images generated using different DIBR methods. Second, it
was found that the degradations in main structures of natural
images at different scales remain almost the same, whereas the
statistical regularity is destroyed in the DIBR-synthesized views.
Estimating the deviation of degradations in main structures at
different scales between one DIBR-synthesized image and the
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statistical model, which is constructed based on a large number
of natural images, can quantify how a DIBR method damages
the main structures and thus infer the image quality. Via tri-
als, the two NSS-based features extracted above can well predict
the quality of DIBR-synthesized images. Further, the two fea-
tures come from distinct points of view, and we hence integrate
them via a straightforward multiplication to derive the proposed
blind MNSS metric, which achieves better performance than each
component and state-of-the-art quality methods.

Index Terms—Depth image-based rendering (DIBR), image
quality assessment (IQA), blind/no-reference (NR), multiscale
natural scene statistical analysis.

I. INTRODUCTION

IN NUMEROUS practical systems such as remote education
and surveillance, medical and entertainment applications,

free viewpoint videos (FVVs) and the relevant technologies
play extremely critical roles. On the basis of the depth image-
based rendering (DIBR) techniques, new frames are created
from existing adjacent frames. These techniques provide users
with more flexible selection of direction and viewpoint, which
allows users a wholly new generation of the scene via some
rendering technologies and thus largely decreases the cost
and complexity of camera setup [1]. When producing new
frames that were once totally nonexistent, distortions (specif-
ically geometric distortions) are inevitably introduced during
this process [2]. Thus, a reliable quality evaluation method is
highly desirable.

Quality evaluation techniques for various image and video
applications have aroused much attention [3]–[7]. Structural
computational models of HVS have been proposed to ade-
quately solve the problems of image postprocessing and qual-
ity assessment [8]–[11]. In the last several decades, most of
works were devoted to the typical artifacts, such as blur, noise,
contrast change, and compression [12]–[19]. By contrast,
the DIBR-introduced geometric distortion causes a consider-
ably different visual degradation, as shown in Fig. 1. More
specifically, the DIBR method is used to deploy a view and
the corresponding per-pixel depth information to synthesize
‘virtual’ views from a slightly distinct viewing perspective.
Generally, a new view is created along with 1) reprojecting
the texture information into the 3D world via the per-pixel
depth information and 2) producing the ‘virtual’ camera by
projecting the 3D space points into the 2D image plane.
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(a) (b)

(c) (d)

Fig. 1. Illustration of the differences between typical distortions (white noise
and Gaussian blur) and the geometric distortion. (a) Reference. (b) White
noise. (c) Gaussian blur. (d) Geometric distortion.

Based on the above process, the key target of DIBR is to
transfer the occluded regions (mainly occurring at the con-
tour of the foreground objects) in the original view to be
visible in the ‘virtual’ view [2]. The depth information can
be used to solve the occlusion problem to some extent but
inevitably introduces geometric distortions due to the imper-
fect 3D reprojection [20], [21]. There exist the two main
differences between geometric distortions and the majority
of conventional distortions. The former represent one kind
of local distortion and always occur at the contours of fore-
ground objects, while the latter belong to the class of global
distortions and often randomly appear anywhere. It is very
likely that geometric distortions can more easily devastate the
semantic structures and thus lead to a stronger influence on the
image quality than typical artifacts. Experiments demonstrate
that many IQA models, regardless of whether they are full ref-
erence (FR) [22]–[25] or no reference (NR) [26]–[29], cannot
yield reliable quality scores when assessing DIBR-synthesized
views. One possible reason why the IQA models mentioned
above work ineffectively is that their design principles mainly
rely on classical low-level visual features or their variants,
which are sensitive to the typical distortions, whereas the new
high-level features specific to the geometric distortion are not
included.

Although there are many IQA models, limited efforts have
been devoted to the explorations of DIBR-synthesized views
to date. In [30], the view synthesis quality assessment (VSQA)
method was designed by exploiting the impact of orienta-
tion, texture and contrast to modify the distortion/similarity
map, which is computed from a synthesized view and its
corresponding reference views. In [31], the 3D-synthesized
view image quality metric (3D-SWIM) method was developed
to conduct statistical comparisons of Haar wavelet subbands
of the matched blocks between the reference and DIBR-
synthesized images. In [32], [33], the morphological wavelet

peak signal-to-noise ratio (MW-PSNR) and morphological
pyramid peak signal-to-noise ratio (MP-PSNR) for evaluating
the quality of 3D-synthesized views were developed; these
metrics are based on morphological wavelet decomposition
and morphological pyramid decomposition, respectively, fol-
lowed by mean squared error pooling at several scales. In [34],
a reduced version of MP-PSNR (MP-PSNR-RR) was proposed
by merely leveraging detailed images from higher pyramid
scales for visual quality estimation, which yields superior
performance and less computational complexity compared
with the original method. The aforementioned IQA metrics
were designed specifically for 3D-synthesized image quality
evaluation based on the entire or partial information of bench-
mark reference images, and this fact very possibly restricts
their application scopes since original camera-capture images
that correspond to the ‘virtual’ DIBR-synthesized images are
usually not accessible in FVV systems. Furthermore, the
camera-captured view and its associated depth map might be
also distorted, and under such conditions, the quality of the
above two maps would be importantly used to help evaluate
the quality of a DIBR-synthesized image in terms of, e.g.,
texture and color distortions.

To address the above-mentioned problem, we directly
develop a novel NR-IQA model used to blindly predict the
quality of DIBR-synthesized views. The proposed blind IQA
model is devised based on multiscale natural scene statistical
analysis; hereinafter, we refer to it as MNSS. The design the-
ory underlying our MNSS model relies on two newly explored
natural scene statistics (NSS) models specific to the qual-
ity measurement of DIBR-synthesized images. The first NSS
model originates from the subsequent two observations: one
is that the DIBR-introduced geometric distortion damages the
local self-similarity attribute of natural images; the other is
that the damage degrees of self-similarity present particular
variations at different scales. Through a valid combination of
damage degrees at distinct scales, the first NSS-based feature
can measure the naturalness of a DIBR-synthesized image
and accordingly indirectly generate a reliable estimation of
its quality. The second NSS model is built upon a prior
that the statistical regularity of degradations in main struc-
tures at different scales, which come from natural images,
will be evidently broken by DIBR methods. Estimating the
distance of degradations in main structures at distinct scales
between a DIBR-synthesized view and the statistical model
constructed using massive natural images can reflect how a
DIBR technology damages the main structures and is there-
fore adopted to predict the image quality. The two NSS-based
features above were validated in the experimental results of
a good ability to accurately assess the quality of DIBR-
synthesized views. Considering that the two features are
extracted from different perspectives, direct multiplication is
thus applied to the two features to derive our NR MNSS
metric.

The structure of the paper is outlined as follows. Section II
presents the newly established two NSS models specifically
devoted to DIBR-synthesized views and the associated blind
MNSS metric. Section III conducts comparisons of our blind
metric with state-of-the-art FR, RR and NR IQA methods.
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Fig. 2. Comparison of reference and DIBR-synthesized images at multiscales. 2↓ : downsampling by 2. 4↑ : upsampling by 4.

Section IV extends the MNSS to video quality assessment.
Section V concludes the whole paper.

II. NSS-BASED BLIND QUALITY ASSESSMENT

In this section, we will first introduce the two novel NSS
models, which are specific to DIBR-synthesized images, and
then propose the blind IQA algorithm by fusing two features
extracted based on the above two NSS models.

A. Self Similarity-Based NSS Model

As for natural images, the local self-similarity characteristic
is an essential attribute and it has been broadly employed to
many applications such as image description and compres-
sion [35], [36]. One can see from Fig. 1 that, in contrast
to white noise or Gaussian blur which affects the global
image self-similarity attribute, the geometric distortion merely
changes the self-similarity characteristic in some typical local
regions and meanwhile makes no influences on other areas.
When we conduct the multiscale analysis on a reference
image X and its associated DIBR-synthesized image Y , taking
Fig. 1(a) and (d) for example, the distance between X and Y
rapidly decreases with the scale reduced, as presented in Fig. 2.
The top row refers to the reference image and the bottom row
refers to the DIBR-synthesized image. The SSIM (Structural
SIMilarity) values [12] accurately reflect the variation ten-
dency stated above.1 If the reference image Xi at the i-th down
scaled version from X, where i = {1, 2, . . . , 5}, is known, we
can simply measure each distance between Xi and Yi, denoted

1The greater SSIM value indicates the higher similarity and the closer
distance between the two compared image signals.

as D(Yi, Xi), and combine the five measures to infer the over-
all quality score of the DIBR-synthesized image Y . Note that
X1 and Y1 are actually X and Y , respectively.

But in real applications, reference free viewpoint images
are usually unavailable, so the DIBR technique is needed to
generate virtual free viewpoint images. In other words, blind
quality assessment of the DIBR-synthesized image is more
close to the practical application scenarios. A straightforward
way to address the above problem is to find an approximate
alternative as reference. From Fig. 2, we find that the cor-
rupted image Y5 and the associated reference image X5 have
a very high SSIM value, which means they have a close dis-
tance and Y5 can be approximately used as reference. Consider
X3 for illustration. We can derive the subsequent approximate
relationship D(Y3, X3) = D(Y3, X̂5) ≈ D(Y3, Ŷ5), where ‘ ˆ ’
is a perfect upsampling operator which is supposed to totally
recover the detailed information lost owing to downsampling
and keep the two inputs having the matchable size.2 Here, Ŷ5
is the upscaled version of Y5 to the scale 3. Hence, we can
compute D(Yi, Ŷ5) to approximate D(Yi, Xi), where Ŷ5 is the
upscaled version of Y5 to the scale i, i = {1, 2, . . . , 5}.

We further treat the above issue from another viewpoint.
X1, X2, . . . , X5 are reference images with the perfect quality.
According to the SSIM value, we can derive the follow-
ing quality rank: Y1 < Y2 < Y3 < Y4 < Y5. For further
analysis, we fix Y1 and Y5 and set Yi as a variable, where
i = {1, 2, 3, 4, 5}. Suppose S(Y1, Ŷi) be a similarity measure
between Y1 and an upsampled version of Yi to the scale 1.
When D(Yi, Ŷ5) rises, the similarity between Y1 and Ŷi, i.e.,
S(Y1, Ŷi), increases, and vice versa. That is to say, S(Y1, Ŷi)

2In general, we consider D(Yj, Ŷi) for illustration. Ŷi is upsampled from
the scale i to j and thus it has the same size with Yj.
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Fig. 3. Illustration of similarity maps: (a)-(c) S̄, Ṡ and S̈ maps of the reference
image Fig. 1(a); (d)-(f) S̄, Ṡ and S̈ maps of the DIBR-synthesized image
Fig. 1(d).

has the same changing trend with D(Yi, Ŷ5). In the IQA, we
pay more attention to the monotonicity between objective
predictions and subjective ratings, e.g., SROCC [37], rather
than precise estimations of subjective ratings. Therefore, we
can consider S(Y1, Ŷi) to be an alternative of D(Yi, Ŷ5) (or
D(Yi, Xi)), where i = {1, 2, 3, 4, 5}. Results verify that using
S(Y1, Ŷi) is able to bring about an about 15% performance
gain (in terms of SROCC) beyond using D(Yi, Ŷ5). This phe-
nomenon may be due to the use of SSIM-form measure instead
of other distance measures or Y1 has larger resolution and
richer details as compared with Y5. Hence, in this work we
use the similarity measure.

Multiscale analysis is an important attribute of the human
visual system (HVS), which has been widely used in many
image processing fields, for example, quality evaluation [38]
and saliency detection [39]. Following the multiscale analysis
in [38], we fuse each similarity map and derive

S̄j =
N∏

i=1

[Sj(Y1, Ŷi)]
γi (1)

where N = 5 and j indicates the pixel index; {γ1, γ2, . . . , γ5}
are assigned in accordance to a psychophysical experiment
as {0.0448, 0.2856, 0.3001, 0.2363, 0.1333} [38]. We employ
the commonly used similarity metric (not SSIM) with three
merits of symmetry, boundedness and unique maximum to be
the distance measure:

S(Y1, Ŷi) = 2Y1 · Ŷi + ε

Y2
1 + Ŷ2

i + ε
(2)

where ε is a constant number for avoiding division-by-zero.
Note that Equation (2) is bounded belonging to the range of
[0, 1] and it reaches to 1 when two inputs are exactly the same.
Observing Equation (1), Ŷ1 is indeed Y1. So we can simplify
it as

S̄j =
N∏

i=2

[Sj(Y1, Ŷi)]
γi . (3)

In the DIBR-synthesized image, e.g., Fig. 1(d), there exist
some isolated noisy pixels, which have little influence on the
quality perception. So we apply a small size median filter to

Fig. 4. Distribution of Ṡ values of about 50 million pixels from 300 natural
images. The number of Ṡ values greater than 0.1 accounts for about 99.85%
of all the pixels.

S̄ and generate Ṡ in order to remove isolated noisy pixels.
Furthermore, even for natural images, distortions that do not
originally occur will be included into the fused map S̄ since the
bilinear interpolation method is not perfect upsampling tech-
nology and must introduce blur distortions. Therefore, we exert
a thresholding on the filtered map Ṡ for extracting geometric
distortion regions:

S̈j =
{

0, if Ṡj < T
1, otherwise

(4)

where T is a small constant threshold determined based on
a large number of natural images. The newly generated blur
distortions are beyond this threshold and therefore removed.
By contrast, the geometric distortion regions are beneath
this threshold and thus preserved. In Fig. 3, we show S̄,
Ṡ and S̈ of the reference and DIBR-synthesized views (i.e.,
Fig. 1(a) and (d)). Comparing Fig. 3(c) and (f), one can easily
see that S̈ well extracts the geometric distortion areas.

Determining the T value depends on a new NSS regular-
ity. Specifically, we randomly selected 300 natural images
with high quality from the Berkeley image segmentation
database [40] and compute their Ṡj maps. We assume that no
geometric distortion regions are included in most of the chosen
natural images, or in other words, the majority of (about 50
million) pixels should be higher than T . We plot the histogram
of Ṡ values of all the pixels in Fig. 4. One can clearly see that
the number of Ṡ values beyond 0.1 possesses about 99.85%
of all the pixels and we thus approximately set T as 0.1.

Eventually, we blindly extract the first NSS-based feature
for estimating the quality score of an input DIBR-synthesized
image as

Q1 = 1

L

L∑

j=1

S̈j (5)

where L stands for the number of all the pixels in S̈. It is
worthy to emphasize that the greater Q1 value refers to less
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Fig. 5. Comparison of variations in main structures at multiscales: (a)-(c) camera-captured original image and two DIBR-synthesized images; (a1)-(a5),
(b1)-(b5) and (c1)-(c5) main structures of (a), (b) and (c) at multiscales.

geometric distortion and larger subjective mean opinion score
(MOS), and vice versa.3

B. Main Structure Consistency-Based NSS Model

Structures in images convey crucial visual information and
are significant to scene analysis and understanding. Structure
maps based on various measurements, such as covariance and
gradient, were used in several classical IQA models, such
as structural similarity index (SSIM) [12], feature similar-
ity index (FSIM) [22], gradient magnitude standard devia-
tion (GMSD) [23], etc, were developed by comparing the
distance of structures between the reference and corrupted
images. Damaging the structures, particularly the main struc-
tures, e.g., contours, leads to a considerable influence on
visual quality of images and may even result in the loss
of semantic information [42]. The most critical distortion of
DIBR-synthesized images is the geometric distortion. During
image rendering, occlusion is an inevitable problem because
limited cameras are used for capturing views. This often
creates some holes (i.e., geometric distortion) in the DIBR-
synthesized images, especially at the contour of foreground
objects, even though advanced inpainting and interpolation
techniques are applied for repairing the holes. For illustration
consider a representative sample shown in Fig. 1(d). It is evi-
dent that the DIBR-introduced geometric distortion damages
the main structures of foreground objects (namely the contour
of two persons).

We can simply make a direct comparison between a DIBR-
synthesized image and its reference counterpart in terms of
consistency of main structures, if possible. But reference free
viewpoint images cannot be accessible in most cases due to

3Part of this subsection was described in [41]. How to determine T is a
new contribution of this paper.

the fact that there are only limited cameras for view capture.
As thus, a new NSS model should be carefully developed for
capturing the consistency of main structures. By comparing
the difference of main structures of a DIBR-synthesized view
with the NSS model established based on a large quantity of
high-quality natural images, we can estimate the degradation
level of main structures which is caused by the DIBR method
and thereby infer the visual quality of the DIBR-synthesized
image. The new NSS model was built based on the following
observations and approximations.

First of all, we find that the distribution of main structures
between a DIBR-synthesized image and its associated refer-
ence one converge to the consistency as the scale reduces. As
shown in Fig. 5, (a)-(c) in order indicate a reference image
and the two corresponding views synthesized by two typical
DIBR methods, while, (a1)-(c5) provide the main structures
computed by exploiting the well-known Canny edge operator
at five scales. Owing to the disappearance of massive edges
with the scale reduced, for a fair comparison, we adopt the
popular and efficient bilinear upsampling method to rescale
the downsampled image to its original size before finding the
main structures. As seen, despite the noticeable difference in
the main structure maps of (a)-(c) at the first original scale,
i.e., (a1)-(c1), the three main structure maps at the last fifth
scale, i.e., (a5)-(c5), are quite similar to each other. The dis-
tribution of main structures converges to the same as the scale
reduces. By comparison, we can also find that, at the first scale,
some differences in the main structure maps are caused due to
the geometric distortion, for example, around the contour of
the man’s head, and these differences tend to disappear with
the scale decreased.

With the above concern, the difference of degradations in
main structures at multiscales between the DIBR-synthesized
and reference images can be used to estimate the distortion
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intensity and even the visual quality of the DIBR-synthesized
view. A simple solution is to directly compare the difference
of main structure maps at five scales, but there exists the
mismatch problem caused by occlusion and thus a warping
operation is needed for solving it. Of course, in this regard,
the reference image must be available for adjusting the DIBR-
synthesized view to make them have a well match; otherwise,
using the pixel-based difference measure is meaningless. Our
terminal target is to devise an IQA model without using any
reference information, so we instead resort to another solution.
More concretely, we compute the similarity of degradations4

(not SSIM) in main structures between the DIBR-synthesized
image and its reference one as the distance measure or visual
quality:

Q2(Y, X) = 1

U

U∑

u=1

2mY(u) · mX(u) + ε

mY(u)2 + mX(u)2 + ε
(6)

where ε is a very small constant to remove the big influence
of division-by-zero; u indicates the scale where the similarity
is measured; U = 5 represents five scales; mY is a vector of
degradations in main structures of Y , comparing the similarity
of the two main structure maps at the U-th scale and the u-th
scale defined by

mY(u) =
V∑

v=1

MU(v) ⊕ Mu(v) (7)

where Mu stands for the u-th main structure map; ⊕ is the
XOR operator; v is the index of pixels in Mu; V means the
number of all the pixels. There are only two values 1 or 0 at
the location v, which separately mean whether or not a main
edge is included. mX has the similar definition for X. To make
Q2 have a good range of [0, 1], we separately normalize mX

and mY before Equation (6) is implemented.
Observing Equation (6), we easily find that the calculation

of Q2 still depends on partial information from the reference
image, namely mX , which does not reach to the ideal no-
reference condition even though only 5 numbers in mX are
required.5 Therefore the next step is to find an alternative to
approximate and thus replace mX , making the computation of
Q2 totally blind. We also used those 300 natural images from
the Berkeley segmentation database [40] to obtain their asso-
ciated vectors mX . For a vector mX , we can provide a 5-point
curve. We plot the 300 curves together in Fig. 6 for easy com-
parison. We label five points of each curve with the color of
blue and use five circles for highlighting. One can see that
there exists an approximating statistical regularity in Fig. 6;
or in other words, those 300 curves are close to each other
and we may find a general five-point curve as prior instead
of extracting from the reference image. As thus, we compute
the median value of 300 values at five scales and derive the
NSS vector mP = {1, 0.9919, 0.9520, 0.8108, 0}, namely the
black dash line shown in Fig. 6. We provide four images for
comparison and plot their curves. We label their quality scores

4Here we use the similarity measure to compare the differences for making
the quality Q2 value have the same order with Q1.

5In fact, only 3 numbers are needed since the first and last numbers must
be 1 and 0.

Fig. 6. Plot of the curves of degradations in main structures of 300 natural
images at five scales. The black dash line is associated to the NSS vector.

in Fig. 6. As compared with the reference image (a), (b) has
obvious black holes while (c) and (d) try to fill the holes. The
difference between (c) and (d) is that the former one fills the
holes better than the latter one. So, we can derive the quality
rankings: (a) > (c) > (d) > (b), which is consistent with their
quality scores. One can see from Fig. 6 that the better-quality
image has the curve closer to the black dash line. In Fig. 6,
how much difference can be found according to scale due to
the geometric distortion of synthetic images from the NSS.
On this basis, we are able to compute Q2 in the completely
no-reference condition by modifying Equation (6) to be

Q2(Y) = 1

U

U∑

u=1

(
2mY(u) · mP(u) + ε

mY(u)2 + mP(u)2 + ε

)γu

(8)

where {γ1, γ2, γ3, γ4, γ5} are also set to be {0.0448, 0.2856,

0.3001, 0.2363, 0.1333}, akin to Equation (1). Note that the
large Q2 value means that the DIBR-synthesized image Y is
close to its associated reference image X (or natural images)
and therefore has high quality.

C. NSS-Based Blind Image Quality Estimation

We have developed two novel NSS models specific to the
DIBR-synthesized IQA and obtained the two corresponding
quality scores. Note that the first self similarity-based NSS
model is based on the local characteristics of natural images
for mainly detecting holes, while, the second main structure
consistency-based NSS model is based on the global attributes
of natural images for tackling the condition when holes are
filled with similar values to neighboring pixels.According to
this analysis, these two models may play complementary roles
and thus they can be systematically incorporated together to
generate a better blind quality assessment model. To specify,
Q1 and Q2 have the consistent order and belong to [0, 1]. So
we can introduce a straightforward multiplication to combine
them, which makes their weighted product still belongs to the
range of [0, 1], and derive the final quality index QMNSS of
the proposed blind MNSS metric:

QMNSS = Qφ
1 · Q2 (9)
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where φ is a fixed positive weighting coefficient to balance
the relative contribution of each component. Akin to Q1 and
Q2, the larger the QMNSS value is, the higher quality the input
DIBR-synthesized view has. More performance comparisons
of Q1, Q2 and QMNSS, as well as the influences of stable
constants on the performance of QMNSS will be discussed in
the next section. And furthermore, in this work we employ
the classical bilinear method and more advanced upsampling
technologies will be considered in the future.

III. VALIDATIONS AND DISCUSSIONS

This section concentrates on measuring and comparing the
performance of the proposed MNSS metric with state-of-the-
art IQA approaches on the image database specific to DIBR-
synthesized IQA.

A. Experimental Protocol

Testing database: The IRCCyN/IVC database [2], which
was established in the year of 2011 specifically for the
DIBR-synthesized IQA task, is applied for examining the
effectiveness of our proposed blind MNSS model. There
include 96 images in the IRCCyN/IVC database, 12 reference
images and their corresponding 84 DIBR-synthesized images
based on 7 different DIBR methods. The absolute category
rating-hidden reference (ACR-HR) method [43] is used for
conducting the subjective test, and each observer scores the
test item with a discrete category rating scale. Since this study
is devoted to developing NR-IQA methods, we only focus on
those 84 DIBR-synthesized views, which are mainly distorted
by the geometric distortions.

Quality models: Up to twenty IQA models were collected
for comparison. The first type is composed of seven FR
IQA models, which are SSIM [12], visual signal-to-noise
ratio (VSNR) [44], most apparent distortion (MAD) [13],
information weighted SSIM (IW-SSIM) [45], feature sim-
ilarity (FSIM) [22], gradient magnitude standard deviation
(GMSD) [23], and perceptual similarity (PSIM) [42]. The sec-
ond type includes three reduced-reference (RR) IQA models,
reduced-reference entropic differencing (RRED) [46], fourier
transform based quality measure (FTQM) [47], and orienta-
tion selectivity based visual pattern (OSVP) [48]. The third
type consists of four NR IQA models, quality-aware cluster-
ing (QAC) [49], natural image quality evaluator (NIQE) [26],
no-reference image quality metric for contrast distortion
(NIQMC) [27], and integrated local NIQE (IL-NIQE) [28].
Note that about one half of the above-mentioned 14 IQA
methods were developed in the past four years. The last type
contains six state-of-the-art IQA models devoted to the DIBR-
synthesized images, which are VSQA [30], 3D-SWIM [31],
MW-PSNR [32], MP-PSNR [33], MP-PSNR-RR [34], and
AR-plus thresholding (APT) [50]. Among them, the former
fours are FR IQA models while the last twos are RR and NR
IQA models.

Evaluation criteria: The correlation performances of our
proposed blind MNSS and competitors are measured based
on four broadly applied evaluation criteria, as suggested by

the video quality expert group (VQEG) [51]. The first and sec-
ond criteria are the spearman rank order correlation coefficient
(SROCC) and the kendall’s rank-order correlation coefficient
(KROCC), which are both non-parametric tests for prediction
monotonicity. By contrast, the SROCC focuses on computing
the degree of association between two vectors, whereas, the
KROCC inclines to evaluate the strength of dependence of two
vectors. Further, the KROCC has stricter demands such as the
vectors should be ordinal. The third criterion is the pearson lin-
ear correlation coefficient (PLCC) or commonly known as the
linear correlation coefficient, which measures the correlation
between two vectors in terms of prediction accuracy. Besides,
the last one is the root mean square error (RMSE), which
is used to predict the prediction consistency of two vectors.
The first two criteria are directly applied to subjective quality
scores (qs) and objective quality predictions (qo), whereas, the
last two are conducted on qs and converted objective quality
predictions (q̃o), which is derived from qo by decreasing its
nonlinearity via a five-parameter nonlinear logistic equation:

q̃o = β1

(
1

2
− 1

1 + exp [β2(qo − β3)]

)
+ β4qo + β5 (10)

where βββ = {β1, β2, . . . , β5} is a five-parameter vector, which
is fitted using a nonlinear regression. It needs to stress two
points: 1) the range of SROCC, KROCC and PLCC is [0, 1]
and that of RMSE is [0,+∞]; 2) a good quality evalu-
ation method inclines to obtain a large value of SROCC,
KROCC and PLCC, but a small value of RMSE. More details
concerning the criteria can be found in [11].

B. Performance Comparison

Comparison on evaluation criteria: We firstly calculate the
performance indices of the proposed MNSS model in terms
of the four evaluation criteria stated above. As reported in
Table I, the MNSS model has attained inspiringly high values
of SROCC, KROCC, PLCC and RMSE, respectively 0.770,
0.568, 0.785 and 0.412. The performance results of twenty
competing IQA techniques are also illustrated in Table I for
comparison. We highlight the best performing model in each
type. As compared with classical and popular IQA methods
in the first, second and third types, our proposed blind MNSS
model has attained remarkably better performance than those
IQA measures regardless of full-, reduced- and no-reference
conditions. In fact, the optimal model among those 14 IQA
models is the MAD, whose performance indices are 0.599,
0.437, 0.607 and 0.528, respectively. In terms of the SROCC,
one of the most significant index in the four widely employed
evaluation criterion, the proposed NR MNSS metric has given
rise to the relative performance gain of 28.5% beyond the top
FR MAD algorithm.

Furthermore, in comparison to the fourth type of six IQA
methods which were developed specific to DIBR-synthesized
images, despite the fact that reference image information is
required and exploited in those metrics, the proposed MNSS
model is noticeably superior to them. Considering the SROCC,
our MNSS leads to a big relative performance gain of 7.5%
beyond the best performing APT metric, which obtains 0.716
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TABLE I
PERFORMANCE AND EFFICIENCY (SECOND) COMPARISON OF OUR BLIND

MNSS MODEL WITH 20 CLASSICAL AND STATE-OF-THE-ART IQA
METHODS ON THE IRCCYN/IVC DATABASE. WE HIGHLIGHT THE BEST

PERFORMING METHOD IN EACH TYPE IN BOLD FONT

of SROCC, 0.577 of KROCC, 0.731 of PLCC, and 0.455 of
RMSE respectively.

Finally, we also compare the proposed MNSS metric with
its two components, namely Q1 and Q2. As shown in Table I,
according to SROCC, KROCC, PLCC and RMSE indices,
Q1 has acquired the values of 0.652, 0.525, 0.636 and 0.513,
while, Q2 has obtained the values of 0.522, 0.352, 0.514 and
0.571. These two blind quality measures are of comparable
performance to those above state-of-the-art IQA algorithms
particularly devoted to the DIBR-synthesized images, which
demonstrates the two features’ effectiveness. Additionally, we
also find that systematically combining these two measures,
i.e., the proposed MNSS model, can bring about remarkable
performance gain, about 18.1% beyond Q1 and 47.5% beyond
Q2 in terms of the SROCC. This reflects the necessity of incor-
porating Q1 and Q2 and indirectly prove their complementarity
in the DIBR-synthesized IQA.

Comparison on statistical significance: Besides the above
four evaluation criteria used for numerical comparison, more
attention was paid to the statistical significance comparison
recently. F-test is a typical statistical test, which follows a
variance-based hypothesis and reveals additional information
about the relative performance of distinct IQA methods [52].
The hypothesis which the F-test is based on supposition that

the residual differences of subjective quality ratings and the
corresponding objective quality predictions follow a Gaussian
distribution, which, however cannot be perfectly satisfied in
several cases. According to the Central Limit Theorem, the
residual difference’s distribution can be supposed to have a
good approximation to the Gaussian shape when a large set of
sample points are included, and thus the F-test is somewhat
reasonable and can be applied in this study to compare the
variances of two objective IQA models’ prediction residuals.
By determining whether the two sample sets have the same
distribution, the F-test is able to make a statistically sound
judgment about superiority or inferiority of an objective IQA
model against another one. We implement the F-test on the
proposed MNSS model and 17 high-performance competitors
(including 15 competing IQA methods and two components),
and the results are listed in Table II. A value ‘0’ means that
the two IQA methods are statistically equivalent, while, ‘+1’
and ‘−1’ separately mean that the method in the column is
statistically superior and inferior to that in the row. Clearly,
our proposed MNSS model is statistically better than all the
IQA models tested.

Furthermore, we also check the statistical significance
of six representative models, which include the best per-
forming method in each of four types and two compo-
nents in the MNSS, with the IQA models considered.
One can see that, despite that there exist differences of
those testing IQA models in numerical performance such as
RMSE and PLCC, the most of statistical significance results
between each pair of them are zero, namely, statistically
indistinguishable.

Comparison on scatter plots: One of the most commonly
used comparison strategy in IQA research is the scatter plot,
which can show some intuitive illustrations and comparisons
of different IQA models. As illustrated in Fig. 7, we show
the scatter plots of MOS versus 10 representative objective
IQA models tested on the IRCCyN/IVC database. Those mod-
els considered are composed of: 1) FR SSIM, FR MAD, FR
PSIM, RR FTQM, and NR IL-NIQE; 2) DIBR-specific FR
MW-PSNR, FR MP-PSNR, NR Q1, NR Q2, and NR MNSS.
As can be observed, the proposed MNSS model derives the
sample points with better linearity and convergence, which
illustrates its superiority in blindly evaluating the quality of
DIBR-synthesized images.

Comparison on parameter influence: Robustness of the
used parameters is also a critical index to check the effec-
tiveness of a quality metric. Typically, a good IQA model
should have slight influences on performance when the used
parameters vary. We first examine the impacts of the stabil-
ity constants, i.e., ε in Equation (2) and ε in Equation (8),
on the performance of our proposed MNSS model. Here we
merely concentrate on the representative PLCC and SROCC
values. Results are provided in Fig. 8. For the readers’ con-
veniences, we label the maximum (minimum) PLCC and
SROCC values, which are respectively 0.785 (0.750) and 0.770
(0.731). This means that the proposed MNSS algorithm has
a good robustness to the stability constants. Moreover, we
carefully observe the Fig. 8 and find that ε has very few influ-
ences but ε almost has no impacts. Next, how the number
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TABLE II
STATISTICAL SIGNIFICANCE COMPARISON OF TESTING IQA MODELS BASED ON THE F-TEST. M1: SSIM; M2: VSNR; M3: MAD; M4: FSIM;
M5: GMSD; M6: PSIM; M7: RRED; M8: FTQM; M9: OSVP; MA: NIQE; MB: NIQMC; MC: IL-NIQE; MD: MW-PSNR; ME: MP-PSNR;

MF: APT; MG: Q1; MH: Q2; MI: THE PROPOSED MNSS

Fig. 7. Scatter plots of MOS versus 10 representative objective IQA models tested on the IRCCyN/IVC database. We label two typical indices (i.e., SROCC
and PLCC) for each model and use the black diagonal dash line to provide the benchmark perfect prediction.

of scale affects the performance is also checked and, as it
grows from 2 to 5, the PLCC (SROCC) values are sepa-
rately 0.616 (0.466), 0.617 (0.506), 0.657 (0.498), and 0.785
(0.770). One can find that the performance is sensitive to the
number of scale, which is possibly because the two NSS mod-
els do not work when the number of scale is not sufficiently
large.

Comparison on implantation efficiency: Implementation
speed, or equivalent computational complexity, is also a very
critical factor for judging the performance of a quality metric.
Hence, we compute the implementation time of the proposed
MNSS model with the entire IRCCyN/IVC database, in which
the DIBR-synthesize views are of the resolution 1024 × 768.
We carry out the test of implantation efficiency using the
MATLAB R2015a and a laptop with 2.50GHz CPU processor
and 8.00GB memory. The average result of implementation
costs of all tested images is about 0.5 second, as reported in
Table I. The average implementation costs of 20 IQA metrics
considered in this research are also illustrated in Table I for
comparison. As seen, our proposed MNSS model works quite
efficiently. In fact, the MNSS model is operated with a series
computing. Note that we can independently compute Q1 and
Q2 values, and moreover, in Q1 (or Q2), we can also simulta-
neously conduct the similarity measure for each scale before
combination. With these concerns, the parallel computing is
very probably introduced to largely elevate its implementation

efficiency for meeting the real-time requirements in practical
applications.

IV. APPLICATION TO VIDEO QUALITY ASSESSMENT

Video, due to its supplement of motion information in the
temporal domain, is one of the most commonly used media
for information acquisition. Further, we can regard image
as a special case of video when no motion information is
involved, or in other words, all the frames in one video
sequence are totally the same. So the video quality assess-
ment (VQA) is of important research and application values
for its capability of helping to monitor and control the quality
of video under acquisition, compression, transmission and so
on [53]. We try to extend the MNSS model proposed above
to a blind VQA model by taking temporal information into
consideration.

A. Proposed VQA Metric

We design a temporal pooling to combine the quality score
of each frame, which is estimated by the proposed blind MNSS
model. Based on some motivations, which come from classi-
cal and popular temporal pooling strategies as stated above
and from spatial pooling schemes summarized in [54] such
as saliency-based and quality-based spatial pooling, this work
introduces a new efficient and effective singular frame-aware



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON BROADCASTING

Fig. 8. PLCC and SROCC values with distinct stability constants.

temporal pooling for extending the MNSS model to the video
quality measure of DVBR-synthesized views. The singular
frames are defined from two perspectives: one each for frame
quality and frame complexity. Apparently, the frames of low
visual quality usually attract more human attention than other
frames, and therefore we include this as an important factor
to decide singular frames.

The frame (or image) complexity is abstract and hard to
be endowed with a clear definition although it is an essential
attribute of images. Here we simply exploit the magnitude of
information contained in a frame to define its complexity - the
more information one frame contains, the higher complexity it
has, and vice versa. According to the free energy-based brain
theory [55] and some analyses, the local autoregressive (AR)
model has been successfully used to compute image complex-
ity [56]. For an image of size 1024 × 768, the time consumed
to estimate image complexity with the local AR model is
about 156 seconds, which considerably decreases the appli-
cation values in real-time video processing systems. Towards
alleviating the time-consuming problem, we replace the local
AR model with an efficient compression-backed computational
model [57]. Generally speaking, as compared with the inten-
sity of an input stimulus, humans pay more attention to its
variations, especially in the study of quality assessment. For
illustration consider the following example. Luminance struc-
tures and contrast structures are extracted in the benchmark
SSIM method. The former one is associated to the intensity
mean, while, the latter one is associated to the intensity vari-
ations. In light of correlation with subjective quality scores,

contrast structures have brought about greater performance
than luminance structures. With this concern, we similarly
concentrate on the variations of frame complexity used for
temporal pooling.

Based on the above analyses, we assume that the sin-
gular frames, which have unordinary image complexity and
low visual quality, usually attract more human attention than
other frames. Specifically, we denote a video sequence as
v = {v1, v2, . . . , vn}, where n is the number of the frames,
and its frame quality scores derived using Equation (9) as
f = {f1, f2, . . . , fn} and its image complexity estimations as
c = {c1, c2, . . . , cn}. We more care about image complex-
ity variations, which is denoted as c̃ = {c̃1, c̃2, . . . , c̃n} =
{|c1 − c̄|θ , |c2 − c̄|θ , . . . , |cn − c̄|θ } where c̄ is the expecta-
tion of c and θ is a parameter empirically assigned as 3. First,
we generate a new vector t = c̃/f = {c̃1/f1, c̃2/f2, . . . , c̃n/fn}
and rank this vector from large to small and record the former
m% indices, i.e., {i1, i2, . . . , im}, as the singular frames. Next
we define frame quality scores and image complexity varia-
tions of the singular frames to be fm = {fi1, fi2 , . . . , fim} and
c̃m = {c̃i1 , c̃i2 , . . . , c̃im}. Second, we yield the overall quality
score QMNSSV of one video stream using weighted averaging
pooling:

QMNSSV =
∑m

k=1 fik · c̃ik∑m
k=1 c̃ik

. (11)

Note that the larger QMNSSV score means the better quality
prediction and vice versa.

B. Performance Evaluation

To examine the proposed MNSSV metric for blind VQA,
the IRCCyN/IVC DVBR database was applied [59], which
contains 102 video sequences with 6 seconds and resolution
1024 × 768 between 15 and 30 frames per second. Note that
the design principle of the proposed blind MNSSV metric is
the two newly established NSS models specific to the geo-
metric distortions, so we exclude the 18 compression-related
sequences. Three different multiview plus depth (MVD) video
sequences, i.e., ‘Book Arrival’ (1024 × 768, 16 cameras with
6.5cm spacing), ‘Lovebird1’ (1024×768, 12 cameras with 3.5
cm spacing) and ‘Newspaper’ (1024 × 768, 9 cameras with
5 cm spacing), are included and processed with seven DIBR
technologies to generate four novel viewpoints for each vide
sequence. The authors gathered the individual votes and MOS
scores based on the ACR-HR experiment. Three blind quality
assessment models are included for comparison. Two of them
are respectively NIQEV and IL-NIQEV, which are developed
by incorporating the proposed temporal pooling into NIQE
and IL-NIQE, while, the rest one is the recently proposed NR-
VQA metric, VIIDEO [60]. In what follows, we will carry out
three types of comparisons, one each for evaluation criteria,
statistical significance, and implantation efficiency.

First of all, we examine the performance of the proposed
blind MNSSV metric and report the results in Table III. As
seen, the performance indices have reached to a high level,
namely 0.631 of SROCC, 0.457 of KROCC, 0.632 of PLCC,
and 0.382 of RMSE respectively. As compared with three
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TABLE III
ACCURACY AND EFFICIENCY (SECOND/FRAME) COMPARISON OF FOUR

NR MODELS ON THE IRCCYN/IVC DVBR DATABASE

competing NR quality methods, our MNSSV metric has lead
to a relative performance gain over 25% in light of SROCC.
Secondly, we conduct the statistical significance comparison
between the proposed MNSSV metric of each competitors
considered using the F-test. Results reveal that MNSSV is
statistically superior to the whole three testing quality models.
Lastly, we compute the average computational time of each
testing quality metric consumed to each video frame. One can
see from Table III, for a video frame of resolution 1024×768,
the proposed MNSSV model just needs half a second, close
to the time of our MNSS model for computing one image of
the same resolution. Similarly, we can introduce the parallel
computing towards speeding up its implementation.

C. Discussion

The MNSSV metric is of good performance in predicting
the quality of DVBR-synthesized views, but in comparison,
its performance indices are far less than the MNSS metric
in the DIBR-synthesize IQA. In our opinion, this problem is
mainly caused by the subsequent two reasons. The first is
that the MNSSV metric is an extended version of MNSS,
which is devised based on two NSS models established on
natural images, with a temporal pooling scheme. Therefore,
the MNSSV will be improved by introducing novel NSS mod-
els built on natural video streams. The second reason lies in
that, as for one frame in a DVBR-synthesized video sequence,
less than one tenth of second is supplied for observation and
quality evaluation, while, by contrast, human beings can take
sufficient time, e.g., 2 to 4 seconds, to view and assess a
DIBR-synthesized image. Hence, some video attention meth-
ods will be considered to be incorporated for advancing the
proposed blind MNSSV metric. Besides, it is noted that, as
compared with NFERM [10] and PPPC [61] which were
developed with pixel-based and global-based NSS models, the
proposed MNSS and MNSSV metrics are patch-based. In the
future, we plan to properly combine pixel-, patch- and global-
based NSS models to devise a better blind IQA model of
DVBR-synthesized views.

V. CONCLUSION

In this paper, we have proposed a novel training-free NR
quality assessment model of DIBR-synthesized views based
on two newly established NSS models. The first NSS model
is developed based on the self-similarity of natural images
for extracting local statistical feature, and the second one is
based on the main structure consistency of natural images for

extracting global statistical feature. We further systematically
combine the two features above to propose the final MNSS
method. Via experiments, the local and global features were
proved of high performance in assessing the quality of DIBR-
synthesized images, while, the proposed blind MNSS metric
has achieved noticeably greater correlation performance than
its two components and state-of-the-art IQA methods. The
code of our model will be released at https://kegu.netlify.com.
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